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Abstract

We derive an explicit expression for an associativeroduct on the fuzzy complex projec-
tive spaceCPﬁ‘l. This generalises previous results for the fuzzy 2-sphere and gives a discrete
non-commutative algebra of functions 6@1}"1, represented by matrix multiplication. The matri-
ces are restricted to ones whose dimension is that of the totally symmetric representa&idé of
In the limit of infinite-dimensional matrices we recover the commutative algebra of functions on
CPV~1 Derivatives orCPY ! are also expressed as matrix commutators.
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1. Introduction

The concept of non-commutative geomdfiry?] is emerging as one of the most promising
and interesting new tools in quantum field theory. It is also providing novel insights into
the possible space—time structure at the level of quantum gravity. In quantum field theory it
can provide a regularisation technique which is completely compatible with the space—time
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symmetries of the theory3—17], while in quantum gravity it points the way to radical
approaches. It has also found several applications in string tfEgjryn its matrix model or
‘fuzzy’ form? it promises a radical alternative to lattice field theory, where problems such as
chiral fermion doubling are readily avoid§gtB]. A major obstacle to the development of this
fuzzy alternative to lattice theories is the paucity of fuzzy spaces with explicit descriptions.

An important ingredient in understanding the continuum limit of these fuzzy models is
the x-product. This is a non-commutative product for functions that, in the case of fuzzy
spaces, represents the matrix product. An explicit examplexgfraduct is known for the
fuzzy 2-spherd4]. It is known that ax-product can be defined as a formal power series
on any manifold that admits a symplectic or Poisson strudii®e20], but few explicit
examples are known.

In this paper we present an explicit construction af-groduct on the fuzzy complex
projective spacé:Pﬁ*l. While a non-commutative-product on the continuu@P” 1 is
known, in an integral representation (see, Rj]), to our knowledge this is the first time an
expression for a-product on the fuzzﬂ:P’}]_l has been given. The construction presented
here is a generalisation of the construction ofthgroduct on the 2-sphere given[ii.

The layout of the paper is as follows: in the next section we give a brief discussion of
harmonic expansions of functions on fuzzy spaces, by way of motivatiangooducts and
their use in quantum field theory; Bection 3we give a general discussion efproducts
analysing when they can be expected to exist and, in particular, when the given construction,
based on equivariant products, should exsictions 4 and Bive a description o€PV~1
in terms of global coordinates; Bection &hex-product on fuzz>CP1}"1 is constructed in
terms of projectors anBlection Mescribes the relation between derivatives in the continuum
and their discrete representation@ﬁ’}’*l; finally Section 8ummarises the conclusions.
Some technical results required for the main text are reserved for the appendices.

2. Fuzzy functions

If one attempts to discretise field theory on a continuous manifold there are immediate
problems that have to be overcome. Not least is the fact that continuum symmetries are
lost and great care must be exercised in ensuring that they are recovered again when the
continuum limit is taken. Another problem, which occurs in Fourier space and is not often
remarked upon because the resolution appears to be so simple, is that the algebra of functions
in truncated Fourier space does not close in general. For example if one Fourier analyses
functions on a circle,

fO)= > fae€", 2.1)

n=—0oo

and approximates them by cutting off the Fourier series at some maximum freqiency,

L
L@ =Y fue" 2.2)

n=—L

2 Fuzzy spaces are discrete matrix approximations to continuous manifolds.
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then the product of two such functions will in general extend to frequencies upao@ so
the algebra of truncated functions does not close under multiplication. The same problem
manifests itself when functions are expanded on a sphere in terms of spherical harmonics
and then approximated simply by cutting off the expansion at some maximum angular
momentum. An obvious fige remedy is to project after multiplying and just throw away
all the frequencies higher thdn While this brute force method may work, it is not without
its problems—for example such a process is non-associative in general. There are sometimes
situations where a more elegant method presents itself which at the same time does less
violence to the group representation theory and allows certain spaces to be discretised while
preserving their continuum symmetries. One approach is to identify the coefficients in an
harmonic expansion with elements of a matrix. If the multiplication of two functions can be
implemented by matrix multiplication then the matrix algebra will close and no projection
is necessary.

Consider for example a two-dimensional sphere which can be written as the coset space
$2=SU2)/U1). A general function 0i8U(2) can be expanded in terms BEmatrices,

f= Y Y fD @3

1=0,1/2,1,... m,m'=—I

To restrict this to a function or$2 the expansion must be restricted to entries of the
D-matrices (or linear combinations of them) which are invariant under the right action
of U(1). The only such entries have’ = 0, and hence have integrglsincem’ is the

U (1) quantum number. Th®-matrices can be constructed so tlﬁé} o are independent

of the third Euler angle o8U(2), then they depend only on the polar and azimuthal an-
gles ons? and they are essentially the spherical harmonics—in standard notdygn:

V(@ + 1)(—1™Y! . Now the representation theory®E(2) allows a re-arrangement
of the coefficients in a truncated expansion

L l
fLO.0)=>">" fnDl 0. 0) (2.4)

=0 m=—1

into a square matrix. For any given vaIueloizm_fl fl Dl (0 Is just one component of
the row vector obtained from the right action of an eIemenSU(Z) on the row vector
with componentsf’,, m = —1, ..., 1. For a fixed! the row vectors with componentg,
carry an irreducible representation 88(2). The set of all coefficients in the expansion
(2.4) therefore constitute a reducible representation. For example=ifl the number of
coefficientsf! is 1+ 3 =2 x 2, if L = 2 the number is % 3+ 5 = 3 x 3 and so on. For
generalL, the number of terms in this expansion at each valuéso® + 1 giving a total of

(L+1)°=143+5+---+Q2L+1) (2.5)

coefficients, which are in the reducilfle + 1) x (L + 1) representation ddU(2). Multipli-
cation of two functions truncated at the same valuke cn now be defined as multiplication

of their associatedL + 1) x (L + 1) matrices and group representation theory ensures
that the resulting product, being itself(d + 1) x (L + 1) matrix, only entails angular
momentum up td.. These matrices define the fuzzy sphere and this matrix multiplication
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induces the:-product on the fuzzy sphere. It is a non-commutative associative product and
it will be shown later that it reduces to the familiar commutative product of functions in the
limit L — oo.

The 2-sphere is rather special in tigit{2) has irreducible representations for every
integer and so matrices of any size can be used to approximate functions, but more general
coset spaces are more restrictive. Consider, for exarié,= SU®3)/U(2). Again a
function onSU(3) can be expanded in terms of the representation matric8s(&,

_ (l1,12) (l1,l2)
f= Z Z Iy sy Pri vy sy (2.6)

.02 1I3,Y:;1',1'3,Y’

where the integerg and/, label the irreducible representationsQIfk3) (1 and/, are,
respectively, the number of symmet8is and the number of symmetr&s in the Young
diagram of the representation) ahd/z andY are the isospin, third component of isospin
and hypercharge, respectively, of the little grau®) (these can be used to label the weights
of any irreducible representation8t)(3) unambiguously). To describe a scalar function on
CP? we must pick out the parts of ttf&(3) representation matrices that @r¢2) singlets
under right multiplication. This immediately eliminates all the complex representations of
SU(3): the 3, 3, 6, 6, etc. The remaining real representations reqlire= I, = [ and
have dimensiori/ + 1)3. Again of these only one column of each representation matrix
survives—the one given b = I'3 = Y’ = 0. The column vectory;f’,l;,y : Dﬁ’}; ¥:0.0.0

thus constitute generalised spherical harmonic€Bfand functions can be expanded as
(l D} (l D}
f= Z Z L13,Y 1 A3 Y (2.7)
1,13,Y
Again the coefficients fall into representations3if(3):

1+8+27+64+--. (2.8)

Truncating at some maximum valuk, of [ always allows the number of coefficients to be
arranged in a square matrix: ths= 1 gives3x 3 = 1+8; L = 2 gives6x 6 = 148+ 27;

L = 3 gives10 x 10 = 1 + 8 + 27 + 64; and so on. Truncating dt results in square
matrices of siz&€L + 2)(L + 1) /2, which is the dimension of the symmetric tensor product
of L 3's (or L 3's), and

L 2 2
S+ = L2 4(L +U° 2.9)

Again the group representation theory ensures that matrix multiplication keeps within the
same representations and never goes aliove

This construction generalises to the higher-dimensional complex projective Spfted
where the matrices at the smallest non-trivial approximation begirNvitN = 1-+(N%—1),
the next beingN(N + 1)/2 x N(N + 1)/2 = 1+ (N2 — 1) + N2(N2 + 2N — 3)/4, etc.
Truncating atL givesa [N — 1+ L)!/(N — DI!L!] x [(N — 1+ L)!/(N — 1)!L!] matrix
representation approximation8P” ~*. A similar truncation works for unitary Grassman-
nian manifold§17]. However, it is not always the case that the representation theory allows
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the expansion of a function on a coset space to be described in terms of square matrices like
this. When it can be done we can define-product on a fuzzy version of the space.

3. On %-products

In this section we present a general discussior-pfoducts with emphasis on “equi-
variant” x-products.

Suppose we have an algebdzof linear operators on a finite-dimensional vector space.
We assume that, if € A then its Hermitian conjugaté T € A, so thatd is a*-algebra.
Let a connected compact Lie grogp= {g} act onA by adjoint action of unitary matrices:

P> D FD g, Dlgng =1 (3.1)

We can assume, by Wedderburn’s theorf28, Theorem 6.3. 8]hatA is the direct sum of
fuII matrix algebras, Ma,t of d x d matrices:A = &4 Mat,. As theD(g) action preserves
A, it also decomposes d3(g) = ®4D? (g). Since May is simple, the two-sided ideals
of A are all direct sums of some of the Madr just{0}.

To get ax-product we need, in addition, a functigri on a manifoldM with values in
A*, the dual ofA. Then,(p*, F) := F is a function onM:

(6%, F) (&) = (p*(©), F) = F (&), (3.2)

whereé € M. This mapA — Cr (M) C C*®(M) (assuming appropriate continuity
requirements) induces an algebra structure€giM) if its kernel, Ker, is a two-sided

ideal in A, that is if Ker is a direct sum of some of the Matr {0}. If that is the case,
Cr (M) = A/Ker, and its algebra product is defined by

(F  G)(§) = (p* (&), FG), (3.3)

whereF, G € A. A ) R
_The action(3.1) on A induces an action on its dual* which we denote by —
D*(g)"tF*D*(g):

(F*,D(e)FD(g)™") = (D(g)* 1F*D(9)*. F). (3.4)
Until now there is no requirement that (¢) is a state or has equivariance. The setting is
very general. Suppose we now ask théd) is a state:

(), BTy = (57(6). F), (3.5)
(p ), FTE) = 0, (3.6)
(*6).1) =1, (3.7)

where bar denotes complex conjugation. TRé¢ ) can be identified with a density matrix
0(&) by setting

(55, F) =Tr(p(6)F). (3.8)
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For equivariance we assume tlgadicts transitively oo, & — gé&, such that
p*(g€) = D*(2)p* € D* (g™, (3.9)

Now each Maj and.A can be decomposed into irreducible tensor operators:

Mat, = Sparify (@)}, D (9)T\ @)D @ (g™t = Z 79@)D),, ().

(3.10)
whereg — D®(g) is a unitary irreducible representation. I{éﬁl) (d)} be the dual basis:
(T (@), T (@) = 818 Swmr- (3.11)
It transforms as
D*D (g HTy (@) D* @ (g) = ZT*">(d>D;;€}4<g‘1), (3.12)
where
*(l) o) _
(@)D (2) = Sun. (3.13)

We can expand

~ 1,d) (1 A

di.M
where
PP M—C and pHD = ij(é’d)ﬁ}(l)(d)- (3.14)
M

Now Wedderburn’s theorem implies that foxgroduct to exist, eitheall funct|ons,o(l 4)

for a fixedd, or none must be zero, becausegf has a kernel consistency requires that

it be a full matrix algebra. In fact, because of equivariance, we shall now show that it is
sufficient to check if5*¢-® is zero or not at one point, which we shall call the origin and
denote by,. We have

0D (geg) = D*D () p* D (£0) D* D (g 7Y, (3.15)

or

Zp“ Vet Ty @) = Y py Gy (@Djy, ()

MM’
= oy (880) = DY)y ()04 " (o) (3.16)
So, from equivariance,
pDE) =0= pl V&) =0 and 5D =0, (3.17)

Thus, with equivariance, it is enough to check th&t-?) (¢,) = 0, either for alll or no!,
for each fixedd, to verify if x exists.
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We remark that it is not necessary to assyf&) separately, as we can arrange to have
it with (3.5) and (3.6)

(5" (8E0). 1) = (5* (o). D(9)1D(g™1) = (5" (£0). 1) = (5% (o). 111, (3.18)

which, by (3.6), is a constant non-negative humberAs the ideal containind is A, ¢
cannot be zero if there is a non-trivialproduct. So we can work with* /¢ instead so that
(3.7)is enforced. As fof3.5) and (3.6)they are naturakq. (3.5)gives real functions for
Hermitian operators, an@®.6) givesF = F(£) > 0.

Note that if functions oM do not carry an IRR with the correct multiplicity, it can
happen thatl admits nox-product. This problem occurs, for exampleﬁifs the 8x 8 matrix
algebra ang (&) isal + b[ad(Y)] (where adY) is the adjoint generator of hypercharge)
with a andb chosen so th48.5) and (3.6are satisfied. The, gives a map to functions on
CP?2. The latter has 8 only once, hut has two 8's, so there is neproduct (for a general
discussion sef23]). A x-product does, however, exist @P?, for suitablep, which we
construct later.

It is useful to note the following. Quite generally, in the equivariant case, wyitan
orthonormal basis (in the trace norm) for the Lie algebr& pof

Tr(p(géo)ia) = §a(g) = (Ad g)aBEB(D). (3.19)

Writing 6(g) = (O_ng(g)rp+ terms orthogonal teg), only the first term survives the
tracing, so thahs = &4, with r4 normalised appropriatel¢4 mapsG/H to an adjoint
orbit and provides coordinate functions 6 H .

To escape the limitation of only gettingstar products on adjoint orbits, we may have
to modify the requirement of equivariance.

In the subsequent construction of-g@roduct onCP" ! we shall restrict our consider-
ations to the case wheyfeis a rank 1 projector and we shall use the notafivfor p (or
P1, = p forits L-fold symmetric product, as explained later).

4. Global coordinateson CPN-1

We now turn to an explicit construction of the complex projective sgz8~1, which
can be defined as the space of vectors of unit nor@\¥nmodulo the phase. Since a unit
vector|y) up to a phase defines a projection oper&ot= |¢)(¥|, an equivalent definition
for CPY1is as the space of all projection operators of rank Thi.e.,

CPV-1.— (P eMaty; PT =P, P2 =P, Trp = 1. (4.1)

To construct a set of global coordinates @®" 1, we choose a basis fof x N Hermitian
matrices(t;}, A =0,..., N>—1, consisting ofo = 1/+/N and{t4},A=1,..., N>~ 1,
forming an orthogonal basis for the Lie algebraSif(~). We will normalise them by
requiring

Tr(tt5) = 38,5 (4.2)
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This requirementimplies thag = (1/+/N)1andz4’s are related to the Gell-Mann matrices
Aabyta =14/+/2. Thus,
1
V2

where fACB and d/fB are, respectively, the structure constants and the components of the

symmetric invariant tensor @U(N) in the Gell-Mann basis. Thé-tensor is traceless on

each pair of indices. For raising and lowering indices we will use the Kronécker
ExpandingP in terms of the basis,

1 .
tatg = N5A31+ (dSg +ifp)ic, (4.3)

P =tAr; = &% + &4, (4.4)

The condition thaf® is a rank 1 projection operator leads to the following conditions on
the coordinates4,

1 N-1
£0 = T~ gl6a=——,  dggt"e’ =

These form a set of quadratic constraints which desdfib& ~! embedded in thev?2-
dimensional Euclidean spaéé"z, orin RV?-1 since&? is a fixed constant. For example,
for N = 2 we haveA, B = 1, 2, 3 and the above equations reduce to that of a sphere, or
CP?, of radius 1(«/5 embedded ifR® because thé-tensor vanishes f@U(2).

The coordinates foEPY 1 can be constructed easily by noting that @ne CPV-1
can be obtained from an arbitrarily chosen ori@in by rotating it withg € U(N), P =
gPogT. Of course there is no unique elemegrassociated with®. In fact, any two elements
of U(N) that are related by’ = gh, whereh € U(1) x U(N — 1) give rise to the same
point of CPY~1, as can be seen by going to the basisCéf in which P, is diagonal.
(This leads to still another characterisation of the complex projective spacER¥%- ! =
U(N)/[U(1) x U(N — 1)].) Using this fact one can obtain coordinatg$, corresponding

to an arbitrary point oEPN "1, P = gPogT, from the coordinate§;' of the originP, as
follows:

g = Tr(Ph) = Tr(gPag Trh) = 82 Trigtye 1) = (Ad(g)) 252, (4.6)

V2(N - 2)

v £€. (4.5)

SO thatgA mapCP"Y~1 to an adjoint orbit o/ (V) fulfilling (3.19)
It is important for what follows thaP fulfils the property(3.9):

g 1% 14g = (Ad(9))ABERIA. (4.7)

Hereg € U(N) andg — Ad(g) defines its adjoint representation.

5. The geometry of CPV~1

The coordinate$f§, A = 0,...,N2 — 1 constitute an over-complete, but globally
well-defined, coordinate system f&PY 2. It is therefore useful to use them to describe
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geometrical structures d@P" ! such as the Fubini—Study metric and Kahler structure. To
this end let us regar@P" ! as a manifold embedded in the sp&déz of all Hermitian

N x N matrices. At a given poirl® € CPY~1 we can decomposéN2 into the subspace
T»CPY~1 consisting of vectors tangential@P" ~* and its orthogonal complement. Since
the action ofU/ (N) spans all directions tangential @~ ! at P, andP is rotated by the
adjoint action ofU (N), any vector in T>CP"Y~! must be of the form,

T =iAd(A)P =i[A,P] (5.1)
for some Hermitian matrixA. This immediately implies thaf” must satisfy
=7, . T}=T, TT=0 (5.2)

Note that if A is a generator of the stability subgroljgl) x U(N — 1), the RHS 0of(5.1)
vanishes so that vectofsspan a vector space of dimensiolt— (N —1)?—1 = 2N — 2,
which agrees with the dimension 6PV 1,

The vectors in the orthogonal complement gfGPY~1, on the other hand, can be
represented by the generatgvsof the stability subgroup aff (V). They satisfy

[P,N]=0. (5.3)
One can see this by noting that all such vectors are orthogoffakd[ A, P],
TrNT) =iTr(N[A,P]) =iTr((P,N]A) =0. (5.4)

These facts are now used to describe the Kahler structu@Pdm L. The Kahler structure
consists of the following three mutually compatible structures:

1) Complex structureFor any Hermitian matrix\, regarded as a vector B define
JM) == —i[P, M]. (5.5)
If M is normal toCPY¥ 1 i.e.,if M = N, thenJ(N) = 0 trivially. If M is tangential,
i.e., M =T,then

JXT)=~[P,[P,T]l = ~P(PT — TP) + (PT — TP)P
=—PT -TP+2PTP=-T, (5.6)
where in the last step we have ugdd2) andP7P = 0 which follows immediately
from that equation. Thereford,is a complex structure o8PV 1. In view of (5.3) and

(5.5), Eq. (5.6)shows that-J2 is a projector to the tangent space@®” 1.
2) Metric: For two Hermitian matricedA; and M define

G(My, Mp) = Tr(=J2 (M) Mp) = —=Tr([P, Ma][ P, M3]). (5.7)

This vanishes if any one of the arguments is a normal vector and on tangent vectors it

agrees with the trace metric. It is the metric ®8" ~* induced from the trace metric
for Hermitian matrices. One can show tliat/ (M1), J(M>2)) = G(M1, M>).
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3) Symplectic structuré~or two matrices\M 1 and My, define an antisymmetric two-form
2 by
R(Ma, M2) = G(J(M1), M) = =i Tr(P[Mi, M3)). (5.8)

It vanishes if any of the arguments is norma®" ~. Thus, itis a two-form olcPV 1,
Itis in fact closed, as we shall show 8ection 7
One can combing ands2 to obtain a tensok onCPV 1,
K :=3(G+i%), (5.9)
and it is a straightforward exercise to show that
K (M1, M2) = Tr(PM1M3) — TH(PM1PM2) = TI[PM1(1 — P)M3]. (5.10)
The construction of the Kahler structure described here also holds for other spaces of
projection operators of a fixed rank, i.e., unitary Grassmannian manifolds. However, the

fact thatCP" ~ consists of rank 1 projection operators further simplifies the above equation
to

K (Mg, M3) :=Tr(PMiM3) — Tr(PMy)Tr(PM>). (5.11)

This form of K will be used crucially in the construction of fuz&§P" ~ in the following
section. In terms of the components with respect to the bagis components all vanish)
one finds

1

1 .
Kpag = K(ta, 1p) = NSAB + ﬁ(dACB +ifspéc — Eakp. (5.12)
Gag = 2ReK g, 2a8 = 2 IM K g, ]é‘ = BAC.QCB. (5.13)

Because of our normalisation of the matricgs(4.2), the indicesA, B, ... are raised and
lowered withs"B andsag, respectively. It is shown in the appendix tiRg} := §°Gcgis a
rank AN — 1) projector and in facP = —J2. Alternatively,Eq. (5.7)will yield that result
directly by splitting and combining traces containing the one-dimensional projecasr
in (5.11) In future we shall not distinguish betweénand P, nor betweern2 andJ, and
shall write

K=3(P+iJ) (5.14)
with

Ppg = %5AB + V2(dSgEc) — 2%aés. (5.15)
and

Jas = V2 fSgéc. (5.16)

Infact, as shown in the appendiXitselfis a rankV — 1 projector—it can be interpreted as a
projector from the redundant, global coordinaig$o local (anti-)holomorphic coordinates
onCPY~!. Thatk is a projector is obvious frortb.14) J2 = —P andPJ= JP = J.
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6. Fuzzy complex projective spaces

We now turn to the construction of functions 8@~ ~! and their-product, generalising
the construction given foﬁ% = CP% in [4]. While a non-commutative-product on the
continuumCPY~1 has been known for some tinfi21], we construct here &product on
the fuzzyCPI}"l, with a finite number of degrees of freedom.

In order to describe the harmonic expansion of function€BY ! one only requires
representations which are symmetric products of the fundamental represent&idnvof
i.e., theN representation (or the complex conjughlteepresentation). So the construction
starts with anN-dimensional Hilbert spacei; := N = CV. To represent functions
at the levelL, we use as our Hilbert spacé{, , which is thed;, = (N — 1+ L)!/(N —

1)! L!-dimensionalirreducible representatiorS8if( V) obtained from thé.-fold symmetric
tensor product of{1. Associated with a poirf® in CPY 1 let us consider thé-fold tensor
product ofP,

PL=P® --®P. (6.1)

Being anL-fold tensor product of the same operaf®y, is a well-defined operator 6y .
Note thatP, is again a projection operator of rank 1. We will use this property pfater.

With each operatoF on?; , we construct the corresponding functisn(¢) onCPN 1
using the equivariant mapping prescription,

Fr(&) :=Tr(PL(E)F). (6.2)

In this way we define an injective mapping from operatérsm ‘Hy into functionsFy
on CPY~1 (the injectivity is actually proved at the end of next section). The functians
are sufficient to reconstruct the operator The target space of this mapping is derived
in Section 7 it is what we denote bﬁP%l and is isomorphic to the space &f x d
matrices.

A x-product on this space of functions is defined as

(FL % Gp) () :=Tr(PLFG). (6.3)

Associativity of thex-product is guaranteed by construction and derives from the associa-
tivity of matrix multiplication. Our aim is to derive an explicit, closed expression for the
x-product(6.3) (or (3.3)), solely in terms of the functiong; andG,, and show that it
reduces to the normal product of two functions in the limit> oc.

Atthe levelL = 1, the only functions allowed are functions IineaEi‘§1 This is because
any Hermitian operator acting on the fundamental representéionf SUN), can be

expanded in terms of;. ForF = FAtA, the corresponding functiofi; (¢§) become

Fi(§) = F&;. (6.4)
In particular,t; produces coordinate functiogg,

E4 =Tr(Pry). (6.5)
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Thex-product between coordinate functiogg, &, := Tr(Pt ;) combined with(5.11)
yields the following important relation:

§i*6p =845 T Kjip (6.6)

wherek ; 5 is the Hermitian structure. Note th&t, ; vanishes for ali.

For any f|n|teL functions and theis-product are constructed using Hermitian operators
on ;. according to the prescriptior{6.2) and (6.3)Given two operatorg’ and G write
them in the following form,

F=F 4@ ot 6G=G; ;1Moo (6.7)

where the coefficient tensors are totally symmetric. Of course, for a given operakty on
there is no unigue expression of the above form. In fact, a choice of symmetric tensor
corresponds to a particular extension of the operator to the whole tensor product space
Hi ® Hi--- ® Hi. This ambiguity will eventually disappear because the construction
of functions and theix-product depend only on operators acting#p. The functions
corresponding t¢6.7) are

FL@) =Fj; 5 8068t GLe) =Gy 80 g, (6.8)
and their«-product becomes
(FL*GL)®&) = Fy 3 Gpp €M xEP - g4 gy, (6.9)

Sincet® = 1/4/N is a constant, all functions can be considered as polynomials i just
of degree< L.
Now, in order to express this in the final form, we first substitute the relg@d) into

the above equation and expand it in powerKéfB to get

PO L gA1 | £AL
)|1| FA1-~~Az/‘\1+1~~~ALg &

(FL*GL)(E) =FLE)GLE) + Z

B By - A1B AlB
XGfs’1--~l§1lA?I-f-l“-l;’LS B R A S (6.10)

where the first term is the ordinary commutative product, and will be integrated into the
sum as thé = 0 term for convenience. Finally, using the relation

L! A i
A, 04, FLE) = ngl...A,A,H...ALS AREERE (6.11)

Y
and the fact thak %4 = 0, we get

a

L

(L1
(FL*GL)(E) =) L'l') [0, - 04, FLOIK P2 KNP [Bp, -85, GL(6)]-
=0

(6.12)

Note again that in arriving g6.12) we have extended functions and derivatives to out-
sideCPY~1 and finally evaluated the result @P"~1. However, this extension should
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be regarded as a convenient way of calculation because the final expression involves
functions onCPY~1 and derivatives alongcP"~! only, as we will explicitly show
below.

Eq. (6.12)s one of the central results of this paper and generalises the resifiderived
in [4]. Only thel/ = 0 term survives in the limiL. — oo, which shows that the-product
reduces to ordinary multiplication of functions in the continuum limit, with corrections
being of order L. Note that the limit should be taken with all functions fixed.

As mentioned earlier, and proven in the appendix, the matfix is a projector. In fact
the derivatives ir{6.12) which are flat irRV*~1 are being projected onto the holomorphic
tangent space c8PV~1 and are actually covariant derivatives there. Note that, siice
is Hermitian, it gives a holomorphic derivative when acting to the right, as4R(9z F),
but an anti-holomorphic derivative when acting to the left, a@j¥) K BA = KAB(95 F),
where the bar represents complex conjugation. Thus, if our algebra of functions permit-
ted us to construct holomorphic or anti-holomorphic functionss#peoduct of a (anti-)
holomorphic function with another (anti-) holomorphic function would always reduce to
the ordinary product. More generally theproduct, F; * G, is an ordinary product if
G is anti-holomorphic regardless of the form Bfor, conversely, ifF' is holomorphic re-
gardless of the form of;. Another point to note is that the complex structure is reversed,

J — —J,ifthe original Hilbert space is identified with the complex conjugate fundamental
representatioiN rather than thé\.

The structure here is perhaps most clearly understood by looking at the simplest case,
N = 2. ThenPag = 8ag — 26465 and Jag = +2eapct€. The constraints imply that
£4£4 = 1/2 and so define a unit vectorRP, n4 = +/2&4, so thatPag = Sag — 41 and
Jag = eaon€. Clearly, P = —J%2andPisa projector fronR3 onto the unit sphere while
J, when restricted tm.n = 1, represents the complex structure ®R. In view of the
identity /3 = —J, the combinatiork = (P +iJ)/2 is a rank 1 projector onto a complex
holomorphic coordinate oB8P* (JK = —iK). This interpretation survives to highatalso
and gives a geometric interpretation of th@roduct(6.12)

In a standard geometrical construction a covariant derivative on a curved space can
be obtained by embedding the space in a flat Euclidean space of higher dimension and
projecting the ordinary derivative in the Euclidean space onto the tangent space of the curved
manifold. When the Euclidean derivatives are restricted to act on tensors already projected
to the tangent space of the curved manifold, the projected flat derivative is a covariant
derivative. There is a simplification in the construction here, because the projégtor
satisfied17]

K"BKCPyzKpe =0, (6.13)
which implies that
K"BKCPy(KEDLF) = KPBK PagapF, (6.14)

sincek? = K, with an obvious generalisation to derivatives acting on higher rank tensors.
This identity can be proven using the last form Kfg in (5.10) Kag = Tr[Pra(1 —
P)tg], and completeness of the matriags An alternative, more detailed proof, is given

in Appendix B
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So, definingv, := k%35 andV, := K535 and using6.14)and its generalisation to
convert the successive partial derivative to covariant derivativé& 12) thex-product is

L
(L-D! - -
(FL*GL)E) =) = [Vay -+ Va, FLE]K AP kAP
P L
X[VB]_ e VBIGL(g)] (615)
Converting from global coordinates? with A =1,..., N2 — 1, to local holomorphic
coordinatesz’ withi = 1,..., N — 1 andz’ := 7/ we have the correspondences

Kne— 3(G;+i2,) =125 K" L@/l +ielh =il (6.16)

whereg; ; is the Fubini—Study metric an@, ; the Kahler 2-form, witlg, ; = G5, = 1£2;; =

—i5, and2/’ = GG Q,x. Eq. (6.15)in local coordinates takes the form

L

(FL xGp)(z,2) = Z

(L — 1)
o Vi

x[Viy -+ Vi Gr(z, D], (6.17)

V5 Lz, DR - (271

whereV; is the covariant derivative.

7. Fuzzy derivatives

The star product defined here can be used for more than just multiplying functions on
the fuzzyCPI}"l, it can also be used to define derivatives on the discrete fuzzy spaces. In

the continuum the vector fields @P" ! generatingSU(N) can be expressed as

. 1
La=—ifgtBc=i—=JSc. (7.1)

V2

Itis easily verified that
[La, LBl =ifSLc. (7.2)

The corresponding action of a generaloy on the Hilbert spacé{; is obtained from
exponentiating the generator, that is by considefingn) = dn'lLa;

THPLE) DL HEDL ()] = Tr[PL(E) Di(g ™ F DL (ng)). (7.3)

Infinitesimally, withn 4 small andDZl(n) ~1—intLy,

L .
Tr[m@)(l—inALA)]:{Tr [7’1(5) (1—inA (%))“ %1—%#&. (7.4)

So Tr[PL ()L a] = (L/+/2)€4. (The generator§4.3) in the fundamental representation
were normalised so thatd/~v/2, t5/v/2] = i f5(tc //2).)
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Now the derivative of a function in the continuumis F (&), can be taken over to the
fuzzy case as

N L
(LAFL)(E) :=Tr{PL(®)[La, F]} = TZ(EA x Fp — Fp x§4). (7.5)
Using thex-product(6.12)this is
1 i
LAF = —(K"BagFL — 0 F1)KB®Y = — J"Bap Fy, 7.6
(LAFL)(E) ﬁ( pFp — (0pFL)K™") 7 BFL (7.6)

and this shows that the definitigid.5) is consistent with{7.1). The main point here is that
derivatives on functions in the continuum restrict to derivatives at fibitghich can be
represented as commutators in the matrix algebra,

(LAFL)(E)) = Tr{PL(E)[La, F]). 7.7)

This formula can now be used to prove that the symplectic fagndefined in(5.8) is
closed. Let Lig; denote the Lie derivative along the vector figld Then, in the formula
for the exterior derivative of a 2-form acting on three tangent vec¥ry¥, andZ,

d22(X, Y, Z) = Liex (Y, Z) + Liey £2(Z, X) + Liez 2(X,Y) — 2([X, Y], 2)
—2(Y,Z],X) — 2(2,X],Y), (7.8)

we represent all tangent vector fields by matrices a¢ i) (any tangent vector can be
written as a linear combination of th&,4 at eacht) and conclude that@ = O by the
Jacobi identity.

At this point, it is possible to derive simply the target space of the map(@ir) from
operatorsﬁ" onH, to functionsF; (£) onCPN~1, Since the derivations,[L 4] in H, are
sent exactly to the derivation, in CPY~! by the mapping, the second order Casimir in
the adjoint action irf{; is mapped to the Laplacian ®" !, and the commutator actions
of the Cartan sub-algebra operators are sent to their equivalent derivati©Rd irt. This
means that the normalised simultaneous eigenvectors of all these Cartan operatprs in
are mapped to simultaneous eigenfunctions of all the corresponding derivation operators
in CPY 1 with the same eigenvalues. Denoting the irreducible tensor operators which are
eigenvectors of the Cartan operatorsf%/, with J a multiple index labelling the represen-
tation andM a multi-index labelling the weights, we find thﬁjl are mapped to’ (L)Y,
Y,\J,I being spherical harmonics, the analoguesYpffor SU(2). The constants’ (L) can
easily be calculated and are all non-zero, which implies the injectivity of the mapfing
assumed irf6.2). Thus, the target of the mapping is just the space generated by the eigen-
functionsy,; of the Laplacian which are images of tig , with J running over allSU(N)
irreducible representations in tdg x d; reducible representation that cont&itiN) sin-
glets. For exampl€P! = $§2 = SU2)/U (1) requiresL-fold symmetric representations
with d; = (L + 1) and the(L + 1) x (L + 1) reducible representation decomposes into
irreducible representations &s-3+- - - + (2L + 1). There is only one Casimir f@U(2),
soJ is just the integer of the associated irreducible representation &hid the magnetic
quantum number. Thel 1 =0,..., L, are a basis for allL + 1) x (L + 1) matrices and
Y}w are the usual spherical harmonics.
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8. Conclusions

The central result of this paper Eg. (6.12) which gives the explicit construction of
an associative-product on the fuzzﬁ:P’}"l between two functiong, = Tr{P, F} and

G = Tr(PLG),

(L —D)!
L

L
(FL*GL)&) =FLEGLE) + )
=1

x[0ay - 0, FLEIK P K AP [Bg, - 85 GLE)].
This expression is written in terms of an over-complete set of coordigdtas RNz‘l,
with constraintg4.5). The projectork = (P +iJ)/2 in Eq. (5.14)is defined by

2
Ppg = ﬁ(sAB + V2(dSgEc) — 2k,
and
Jag = V2 fSgEc.

P = —J?is itself a projector mappinBNz*l onto the tangent plane GPY 1 at&4.
P andJ are essentially the components of the usual Hermitian structu@rof*

obtained by embedding itin the space of Hermitian mati¥s The latter is encapsulated
in the threeequations (5.5), (5.7) and (5:8)

J(M) =[P, M], G(M1, M2) = Tr(=J3(M1), M),
and
Mz, M2) :=Tr(M1J (M) = =i Tr(P[Mz, M3]).,

describing the complex structure, the Fubini—Study metric and the symplectic structure on
cpV-1 respectively. In our normalisation conventign= G. Expressed in local holomor-

phic coordinates’,i = 1, ..., N — 1, rather than the global coordinaté$, thisx-product

is (5.17),

(L —1)!

L
(FL*GL)(Z,Z):FL(Z’Z)GL(Z’Z)+Z L
— 1!

x[V5 - Vs FL(z, D](27) - (271}, -V, GL (2. D).

Thex-star product reduces to the ordinary commutative product on the conti@i\is!
inthe L — oo limit for fixed F;, andG [20].

Note also the important expression for the derivative of a function on the mﬁ’%/_l
as a commutatd(7.7), which appears naturally in this construction

LaFL =Tr{PL[La, F]}.
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Appendix A

In this appendix we derive some essential properties of the méitrix (Kag) used in
the definition of thex-product(6.12) First we show thak is a projector, with ranky — 1.
To this end brealk into real and imaginary parts as in the tekt—= %(P +iJ) with

2
Pag = N(SAB — 264Ep + V25n8, (A1)

and
JaB = \/EAAB (A.2)

with symmetric matrixSag := dsgéc and the anti-symmetric matridag := figéc (all
indices are raised and lowered here usigg). It is shown in the text thaf corresponds
to the complex structure 08PY 1, and we show here thatJ?2 is a projector of rank
2(N — 1), with PJ = JP = J and finally J?2 = — P, which implies in particular thaP
itself is also a projector.

i) Kis a projector with rankV — 1. To see this observe that

1 1 . .
Tr(tatptctp) = NaABSCD + E(d/lfB +i f45) (decp + i fiecp)- (A.3)

Now contracting this witlE €2 and using cyclic symmetry of the trace and the con-
straints(4.5) yields the two identities:

2(N -1 2 V2(N -2
Sig— Adg = %MB - ﬁéAEB + %SAB, (A.4)
and
2(N — 2
(SA+ AS)a = %AAB- (A.5)

From these it follows easily th&? = K. Since the constraints also dictate thakty =
N — 1 (tr here means trace over the adjoint representati®Ual ), sos4 = N2 —1),

K is a projector onto aiv — 1 dimensional subspace Bfv>-1.
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i) J2is a projector andJ3 = —J. In the text the complex structure was denoted by
J, and we can identify that with the symplectic structure when the normalisation is
such that indices are raised and lowered wWjith. For completeness we give here an
alternative derivation. First we show thaf = —J and t{—J%) = 2(N — 1). By
definition Jag := v2Aa8 = v2facEC, s0Japt? = i[14, £], where§ = £414. The
constraintg4.5)imply

() (s
Using the commutation relations for gives
[[7a.£]. €], &1 = i(J)amt”, (A7)
while expanding the commutators on the left hand side explicitly, and (&i6g, gives
[[1a. €], £]. €] = —iJagt®, (A.8)
from which we conclude thai® = —J. This means that-J2 is a projector since

(—J%?2 = (—J?) and the definition of/, (A.2), together with the constraintg.5)
and the standard normalisatigiacp facp = Ndas, show that tt—J2) = 2(N — 1) =
dimcpPN 1,

iii) J commutes with P and P3 J. Sincedagc is an invariant tensor we have

fatdnco + fatdarp + fabdech =0,

and contracting this witj4£2 shows thatS commutes withA4, since fagc is totally
antisymmetric. The latter also means thiannihilatest, so that/ commutes withP.
Sincek? = K we haveJ = (PJ+ JP)/2, and henc®J = J.

iv) P = —J2 Therealpartok? = K impliesthatP?—J2 = 2P. SinceP commutes with
J they are simultaneously diagonalisable and becauds a projector, its eigenvalues
areall 0 or 1. So the eigenvaluesPfre 1 when the eigenvalue ef/? is 1, and either 0
or2whenthe eigenvalue ef/2is 0. Callingp the number of eigenvalues 2fhwe have

tr(P) = tr(—J?) + 2p, (A.9)
while, directly from the definition of (A.1) and the constraimtquations (4.5pne finds
tr(P) = 2(N — 1) =tr(—J?), (A.10)

which implies thap = 0. Thus we havé® = —J2, with P a projector of rank 2V —1).
Note that this implies thak annihilates the coordinatééagé® = 0, sinceJ does,
which is easily checked usin@.2).

Appendix B

In this appendix we give an alternative, more detailed, proof of the idgtity8)
K*BK Py Kpe = 0. (6.13)
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Denoting the generators 8J(N) in the adjoint representation l§§4)sc = —i fasc, with
commutation relation®js, 03] = i facfc, we haveJ = iv/20,£4 and
JaBdsJ = /204, J]. Jngfs = [04, J]. (B.1)

Using these commutators it is straightforward to show that

1 ) 1
KagdpK = 72(1+ iJ)aglK, 0] = 7

Now, sincek 2 = K we havek (dK) + (dK)K = dK from which

(K, [0, 1J]] +[K, 04)). (B.2)

K(dK) =dK(1- K). (B.3)

The eigenvalues of/i are+1 (each with multiplicity(N — 1)) and O (with multiplicity
(N — 1)?). We can thus choose a basis where

Inv-1
|J = O(N_l)z 5 (B4)
-1y

and

Iv-1 v,
K= Ov_1y2 - ( O ) : (B.5)

Ov-1)

where, for examplely_1 is the (N — 1) x (N — 1) identity matrix andOy_1, the
(N — 1) x (N — 1) square matrix with all entries zeros. In terms of the 2block structure
of the second form oK above, we write

A B
dK = .

Eq. (B.3)then shows that

0B
KdK = ,

so we only need examine 1K dK|0 > and< 1|K dK| — 1 >, where /|n >= n|n >.
Now from (B.2)

KKagdgpK = %ZK([[I J,04], K]+ [K, 64)), (B.6)

and, sincek |1) = |1), K|0) = K| — 1) = 0, we deduce that

i2<1|[9A, iJ]46410) =0, (B.7)

(1IKKaBIBK'10) =
7
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1 1
(1IKKagdp K| — 1) = ﬁ(lK[@A’ J14+04)]—1) = —E<1|9A| -1. (B.8)

The last expression vanishes, becalsdoes not conne¢l) and| — 1), and(6.13)follows.
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